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Periodic heat conduction in a solid homogeneous finite cylinder
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Abstract

Analytic solution of the steady periodic, non-necessarily harmonic, heat conduction in a homogeneous cylinder of finite length and radius
is given in term of Fourier transform of the fluctuating temperature field. The solutions are found for quite general boundary conditions (first,
second and third kind on each surface) with the sole restriction of uniformity on the lateral surface and radial symmetry on the bases. The thermal
quadrupole formalism is used to obtain a compact form of the solution that can be, with some exception, straightforwardly extended to multi-slab
composite cylinders. The limiting cases of infinite thickness and infinite radius are also considered and solved.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Unsteady heat conduction in homogeneous solids has been
deeply analysed both for its inherent mathematical interest and
for the vast consequences in many applied fields like laser heat-
ing, energy storage [1], building materials [2] etc. Many tech-
niques used to evaluate thermophysical characteristics of solid
materials, like microcalorimetry [3], or to measure convective
heat transfer coefficient [4,5] rely on analytical solutions of
transient heat conduction problems. The problem of transient
multidimensional heat conduction is a challenging one and it
has been faced by many different techniques, like finite inte-
gral transform, Green functions, orthogonal expansion, Laplace
transform and also for the case of composite systems [6–10].
Periodic heat conduction is a relatively less investigated topic,
despite of the significant implications for many applied fields,
but many studies exist relative to periodic conduction in a 1-D
homogeneous slab [11–14], generally limited to harmonic fluc-
tuations and many of them related to the hyperbolic version
of the heat equation, as the wave like behaviour can be better
evidenced in a simple geometry. Studies of periodic conduc-
tion in applied fields also exist for some particular case, like

E-mail address: gianpietro.cossali@unibg.it.
1290-0729/$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.ijthermalsci.2008.05.009
for building walls and materials [15,16] or for techniques to
measure thermophysical characteristics of the materials, like
a.c. calorimetry [17] or 3-ω methods [18], and again for lo-
cal convective heat transfer coefficient measurements [19]. Re-
cently periodic conduction in non-homogeneous material was
also considered for simple geometry [20]. The problem of pe-
riodic conduction in finite cylinder has recently been treated by
Lu et al. [8–10] through the use of an original variable separa-
tion method, although only for a well defined kind of B.C. on
the lateral surface and for harmonic forcing. The present work
is intended to extend the method of Lu et al. [8] to treat the
periodic, non-necessarily harmonic, conduction in a finite ho-
mogeneous cylinder for general periodic boundary conditions
of first, second, and third kind with the restriction of unifor-
mity on the lateral surface and radial symmetry on the bases.
To the author’s knowledge, no solution for this general case
have been reported in the open literature. Moreover, the in-
troduction of the thermal quadrupole formalism [21] allows a
relatively straightforward extension of the results to the case
of composite cylinders and, with some exception, the appli-
cation of a relatively simple way to introduce the boundary
condition directly on the solving formulae. Two significant
cases are also treated, namely the semi-infinite cylinder of fi-
nite radius and the cylinder of finite thickness and infinite ra-
dius.
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Nomenclature

An,Bn constants
Bi Biot number: hR

k
F forcing function
G transfer function
h heat transfer coefficient
Hn Bessel series coefficients
J0, J1 Bessel functions
k thermal conductivity
L cylinder length
Mn quadrupole matrix
Nn auxiliary functions
P Fourier transform of thermal power fluctuations
Q Fourier transform of heat flux fluctuations
q heat flux
R cylinder radius
r radial coordinate
S Fourier transform of temperature fluctuations
T period
T temperature

t time
un, vn Bessel series coefficients
Xn,Yn,Zn complex functions
Z temperature-heat flux vector

Greek symbols

α thermal diffusivity
β non-dimensional complex frequency
γn eigenvalues
δ(x) Dirac delta-function
δjk Kronecker symbol
ε truncation accuracy
η non-dimensional radial coordinate
Θ Hankel transform of S

λn complex parameters
ξ non-dimensional axial coordinate
σ width of the Gaussian distribution
Φ Fourier transform of forcing function
ω angular frequency
2. Basic equations

Consider the case of a cylindrical homogeneous solid bar
of radius R and length L, subject to periodic (non necessar-
ily harmonic) thermal boundary conditions on its surfaces, with
the restriction of uniformity on the lateral surface and radial
symmetry on the bases. Introducing the non-dimensional co-
ordinates: η = r

R
; ξ = x

R
, where r is the radial coordinate

(0 � r � R ) and x is the axial coordinate (0 � x � L), the
Fourier equation can be written:

∂T

∂t
= α

R2

[
∂2T

∂ξ2
+ 1

η

∂

∂η

(
η
∂T

∂η

)]
(1)

Boundary conditions of first, second and third kind can be ex-
pressed through linear combinations of temperature and heat
fluxes on the boundary, nonlinearities are introduced when,
for example, radiative boundary conditions are considered,
however such conditions can be linearised whenever the sur-
face temperature fluctuations are small compared to the time-
averaged absolute temperature [22]. Then the general linear
boundary conditions subject to the previously mentioned re-
strictions can be written as:

ξ = 0, a1T (0, η, t) + a2qξ (0, η, t) = F0(η, t)

ξ = ξL, b1T (ξL,η, t) + b2qξ (ξL, η, t) = FL(η, t)

η = 1, c1T (ξ,1, t) + c2qη(ξ,1, t) = FR(t)

η = 0,
∂T

∂η
(ξ,0, t) = 0; (2)

where q = (qξ , qη) = − k
R

(Tξ , Tη), and the functions Fs (with
s = 0,L,R) are periodic with time. After splitting the tempera-
ture and heat flux fields into time average and fluctuating parts
and introducing the Fourier transforms of the latter as:
T (x, r, t) = Ta(x, r) +
+∞∫

−∞
S(x, r,ω)eiωt dω

q(x, r, t) = qa(x, r) +
+∞∫

−∞
Q(x, r,ω)eiωt dω

the Fourier equation (1) can be split into a time independent
equation

∂2Ta

∂ξ2
+ 1

η

∂

∂η

(
η
∂Ta

∂η

)
= 0 (3)

and a transformed equation:

βS = ∂2S

∂ξ2
+ 1

η

∂

∂η

(
η
∂S

∂η

)
(4)

with β = iωR2

α
. The corresponding B.C. are easily found, but it

will be seen later that the third of (2) needs a little discussion.
Since the main difficulties in finding the analytic solution are
related to the transformed equation (4), in the next session the
discussion will be devoted to the solution of Eq. (4) while the
solutions of the time independent equation (3) can be obtained
referring to those of (4) by setting β = 0.

It should be pointed out that once the solution, in terms of
the transformed field, is found, the solution in term of tempera-
ture field can be obtained by the inverse Fourier transformation.
Although such transformation may not be always obtainable an-
alytically, the use of ready available numeric inversion routines
may yield the wanted solutions, with a high degree of accuracy,
for any type of periodicity of the boundary condition. Moreover,
the case of harmonic periodic boundary conditions is instead
obtainable analytically observing that in such case

S(x, r,ω) = δ(ω − ω0)S(x, r)
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and

T (x, r, t) = Re
{
S(x, r,ω)eiωt

}
3. Solution of the transformed problem

Consider the splitting of the forcing functions Fs into time
averages and fluctuating parts and introduce the Fourier trans-
forms of the latter as:

Fs = Fs,a +
+∞∫

−∞
Φse

iωt dω

then the B.C. for the transformed problem become:

ξ = 0, a1S(0, η,ω) + a2Qξ(0, η,ω) = Φ0(η,ω)

ξ = ξL, b1S(ξL,η,ω) + b2Qξ(ξL,η,ω) = ΦL(η,ω)

η = 1, c1S(ξ,1,ω) + c2Qη(ξ,1,ω) = ΦR(ω) (5)

η = 0,
∂S

∂η
(ξ,0,ω) = 0;

It should be mentioned that the problem treated here is very
similar to that treated by Lu et al. [8] and the method of finding
the solution will follow a path similar to that suggested in [8]. It
should be stressed anyway that the present work generalises that
of Lu et al. [8] in that of extending it to more general boundary
conditions, i.e. non-uniform boundary conditions on the cylin-
der bases and second and third kind on the lateral surface, while
in [8] the solution was given for the single case of uniform first
kind B.C. The extension to the case of a composite cylinder
will then be obtained in a relatively simple way through the use
of the thermal quadrupoles formalism. The third of (5) is quite
important to define the form of the solution and it needs a little
discussion as the nature of the solution of the transformed equa-
tion (4) depends on the choice of the values of c1, c2 and ΦR .
The B.C. for the non-homogeneous case (ΦR �= 0) should be
treated differently for the following cases:

(c1, c2) = (1,0); ΦR �= 0: first kind

(c1, c2) = (0,1); ΦR �= 0: second kind

(c1, c2) = (1,−1/h); ΦR �= 0: third kind

whereas the homogeneous B.C. (ΦR = 0) can be seen as a
particular simpler case (to notice that h has the meaning of a
convective heat transfer coefficient).

Consider first the most general case of B.C. of third kind
c1 = 1, c2 = −1/h, the problem can be solved by the following
procedure. Let first set a new unknown defined by:

S̃ = S − ΦR

in order to homogenise the B.C.; then Eq. (4) becomes:

∂2S̃

∂ξ2
+ 1

η

∂

∂η

(
η
∂S̃

∂η

)
= βS̃ + βΦR (6)

Consider now the auxiliary problem:
1

η

∂

∂η

(
η
∂N

∂η

)
= −γ 2N

hN(1,ω) + k

R

∂

∂η
N(1,ω) = 0; ∂

∂η
N(0,ω) = 0 (7)

which it is satisfied by the Bessel functions of first kind and
zero order:

Nn(η) = J0(γnη)

where the values of the parameter γ are the non-negative roots
γn of the equation:

J0(γn) − k

hR
γnJ1(γn) = 0 (8)

It is well known (see for example [23]) that the eigenvalues are
all distinct and the eigensolutions Nn form a complete basis for
the expansion of functions of η in Dini series. Then, consider
the following possible form of the solution of (6):

S̃ =
∞∑

n=1

Yn(ξ,ω)J0(γnη) (9)

(to notice that Yn(ξ,ω) are complex functions) that satisfies the
third and fourth of (5) and substitute it into Eq. (6) obtaining,
after noticing that:

1 =
∞∑

n=1

unJ0(γnη); un = 2J1(γn)

γn(J
2
0 (γn) + J 2

1 (γn))

a set of equation for the functions Yn(ξ,ω):

∂2Yn(ξ,ω)

∂ξ2
− (γ 2

n + β)Yn(ξ,ω) = βΦRun

whose solutions are:

Yn = Xn − βΦRun

(γ 2
n + β)

with:

Xn(ξ,ω) = Ane
λnξ + Bne

−λnξ ; λn =
√

γ 2
n + β (10)

so that:

S =
∞∑

n=1

Xn(ξ,ω)J0(γnη) + ΦR

[
1 − β

∞∑
n=1

un

γ 2
n + β

J0(γnη)

]

(11)

The case of B.C. of first kind is simply a particular case of this
problem, obtained after setting c2 = 0, which defines the new
set of eigenvalues through the equation

J0(γn) = 0

but the solution S(ξ, η,ω) has still the same general form (11).
Consider now the B.C. of second kind: c1 = 0, c2 = 1. The

procedure is similar to that above reported but slightly more
involved. To homogenise the B.C. on η = 1 let set:

S̃ = S + ΦR

2R

βk

(
1 + βη2

4

)
then Eq. (4) becomes:
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∂2S̃

∂ξ2
+ 1

η

∂

∂η

(
η
∂S̃

∂η

)
= βS̃ − ΦR

2R

k

βη2

4
(12)

Consider again the set of function satisfying the problem posed
by Eqs. (7) and (8), where now c1 = 0 and c2 = 1, choosing:

S̃ =
∞∑

n=1

Yn(ξ,ω)J0(γnη)

and substituting into Eq. (12) after noticing that:

η2 =
∞∑

n=1

vnJ0(γnη); vn =
{ 1

2 for n = 1; γ1 = 0
4

γ 2
n J0(γn)

for n > 1; γ1 > 0

(13)

where the identity
∫ x

0 J0(η)η3 dη = [x3 − 4x]J1(x)+ 2x2J0(x)

was used (see [23]), yields:

∂2Yn(ξ,ω)

∂ξ2
− (γ 2

n + β)Yn(ξ,ω) = −ΦR

R

k

β

2
vn

whose solutions are

Yn = Xn + ΦR

R

2k

βvn

γ 2
n + β

with Xn again given by (10). The solution has then the form

S =
∞∑

n=1

XnJ0(γnη)

+ ΦR

R

2k

{ ∞∑
n=1

βvn

(γ 2
n + β)

J0(γnη) − 4

β

(
1 + βη2

4

)}

= X1(ξ) +
∞∑

n=2

Xn(ξ)J0(γnη)

+ ΦR

R

2k

{ ∞∑
n=2

βvn

(γ 2
n + β)

J0(γnη) − 4

β

(
1 + β(η2 − 1

2 )

4

)}

and the eigenvalues are the non-negative roots of the equation:
J1(γn) = 0.

Summarising the results, the general form of the solution is
then:

S(ξ, η,ω) =
∞∑

n=1

Xn(ξ,ω)J0(γnη)

+ ΦR(ω)

[
s(η) +

∞∑
n=1

gn(ω)J0(γnη)

]
(14)

with Xn(ξ,ω) given by (10) and:

gn(ω) =

⎧⎪⎪⎨
⎪⎪⎩

−β un

γ 2
n +β

1st kind B.C.

R
2k

{ βvn

γ 2
n +β

}
2nd kind B.C.

−β un

γ 2
n +β

3rd kind B.C.

s(η) =
⎧⎨
⎩

1 1st kind B.C.

− 2R
kβ

(
1 + βη2

4

)
2nd kind B.C.

1 3rd kind B.C.

(15)
Fig. 1. Eigenvalues γn as a function of Bi.

To notice that the eigenvalues γn are the non-negative roots
of Eq. (8), thus they are different for the three cases above re-
ported. Introducing the Biot number: Bi = hR

k
, the eigenvalues

γn, see Eq. (8), are then function of Bi, and the particular cases
of 1st and 2nd kind B.C. are those corresponding to the values
Bi = ∞ and Bi = 0 respectively, Fig. 1 shows these functions
for the first few values of n. To notice that the solution for the
homogeneous B.C. case is found by setting ΦR = 0 into the
general solution (14). The B.C. imposed by the first and sec-
ond of (5) can now be easily satisfied by a proper choice of the
constants An and Bn in (10) and the next session shows some
examples of application of the above reported results for differ-
ent B.C.

4. Example of application

As a first example consider the case of harmonic heating of
the surface at ξ = 0, while the flux on surface ξ = ξL is kept
constant and the surface at η = 1 is under convective conditions
with a constant fluid temperature. Let Φ0(η) be the distribution
of the amplitude fluctuation of the heat flux at ξ = 0 then the
B.C. are:

Qξ(0, η) = Φ0(η); Sξ (ξL, η) = 0

Sη(ξ,1) + BiS(ξ,1) = 0

where Bi = hR
k

. From the general solution (14) this yields:

S(ξ, η) =
∞∑

n=1

−Hn

λn

cosh[λn(ξ − ξL)]
sinh(λnξL)

J0(γnη) (16)

where γn are the solution of the equation:

γnJ1(γn) = BiJ0(γn)

and:

Hn =
∫ 1

0 Φ0(η)J0(γnη)η dη∫ 1
0 J 2

0 (γnη)η dη

Choosing a Gaussian distribution for the imposed heat flux
fluctuation: Φ0(η) = e−η2/(2σ 2), the case may represent that
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(a)

(b)

Fig. 2. (a) Absolute value of partial sums Sn at ξ = 0; (b) Absolute value of
partial sums Sn at ξ = ξL = 0.5.

of laser heating of a cylindrical sample, to notice that in this
case the coefficients Hn are approximated by (see [28]): Hn =
2σ 2e−(γ 2

n σ 2)/2/(J 2
0 (γn)[1 + (Bi/γn)

2]), under the hypothesis
σ � 1 (where σ is the “width” of the Gaussian distribution); ac-
tually, the accuracy of this approximation is better than 1% for
σ < 0.2 and n < 20. The numerical example was set by choos-
ing ξL = 0.5 and Bi = 1. The convergence of the series (16) in
this case can be appreciated observing Fig. 2 that shows the ab-
solute value of the partial sum Sn(ξ, η) = ∑n

k=1 Xk(ξ)J0(γkη)

for ξ = 0 and ξ = ξL = 0.5, and from Fig. 3 where the parame-
ter: ε = max(|Sn(0.5, η) − S30(0.5, η)|) is shown as a function
of n.

Fig. 4 reports also the distribution of the points where the
phase difference with the input heat flux fluctuation is nil or
a multiple of 2π , thus showing a sort of wave front location.
The region where the curve are not reported is that where the
field intensity is so small (order of 10−14) that the zero-finding
procedure used to detect the wave fronts does not give con-
sistent results due to numerical inaccuracy. The figure reports
also the results obtained using a top-hat distribution of the in-
put heat flux intensity fluctuation on the surface at ξ = 0 (the
width of the top-hat distribution was chosen so to produce the
Fig. 3. Value of the summation error ε as defined in the text.

Fig. 4. “Wave” front for Gaussian and top-hat (block) distribution of the heat
flux amplitude fluctuation imposed onto the surface at ξ = 0.

same total power fluctuation amplitude at ξ = 0, i.e. the integral∫ 1
0 Φ0(η)η dη is the same for both distributions).

As a second example consider the non-homogeneous prob-
lem set by imposing harmonic heat flux fluctuation on the lat-
eral surface, with constant temperature on the surface at ξ = 0
and constant heat flux on ξ = ξL. The boundary conditions can
then be written as:

S(0, η) = 0; Sξ (ξL, η) = 0; Sη(ξ,1) = −R

k
ΦR

By applying these conditions to the general solution of the
problem, remembering that γn are the solutions of J1(γn) = 0,
comprised γ1 = 0, the following result is obtained:

S(ξ, η) =
∞∑

n=1

ΦR

R

k

2

λ2
nJ0(γn)

cosh(λn(ξ − ξL))

cosh(λnξL)
J0(γnη)

+ ΦR

R

2k

{ ∞∑
n=1

βvn

γ 2
n + β

J0(γnη) − 4

β

(
1 + βη2

4

)}

(see also Eq. (13)). It is interesting to observe that the x-
component of heat flux Fourier transform is:
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Fig. 5. Bode diagram for the ratio G = (Pξ=0)/PR .

Qξ = − k

R
Sξ (ξ, η)

= −
∞∑

n=1

2

λnJ0(γn)
ΦR

sinh(λn(ξ − ξL))

cosh(λnξL)
J0(γnη)

then, the transform of the total power on the isothermal basis
(ξ = 0) is simply:

Pξ=0 = 2πR2

1∫
0

Qξ(0, η)η dη

= 2πR2
∞∑

n=1

2 tanh(λnξL)

λnJ0(γn)
ΦR

1∫
0

J0(γnη)η dη

= 2πR2 tanh(
√

β ξL)√
β

ΦR (17)

Since the Fourier transform of the total power on the lateral
basis is: PR = ΦR2πRL, the transfer function G(ω) = Pξ=0

PR
is

simply:

G(ω) = tanh(
√

β ξL)√
β ξL

√
β ξL =

√
iωL2

α

and Fig. 5 shows the Bode plots. The fluctuations are in phase
for low fluctuation frequencies and in quadrature for large fluc-
tuation frequency and the maximum phase difference (46.6 deg)
is achieved for

√
βξL � 7.9. The solutions in terms of Fourier

transform can then be used to obtain solution in time domain for
virtually any periodic non-harmonic input. As an example, con-
sider the previous case where the input heat flux on the lateral
surface is intermittent with period T , i.e.:

qR(t) = q0w(t) with w(t) =
{

1, |t | < a
2

0, a < |t | � | T |
2 2
Fig. 6. Normalised heat power fluctuation on the surface ξ = 0 for different
values of the non-dimensional cylinder length and for a = T/2.

then the heat flux fluctuation is: q ′
R(t) = qR(t)−q0

a
T

(see Fig. 6
showing the case a = T /2). In this case, the Fourier transform
of the heat flux fluctuation on the lateral surface is:

ΦR = q0

+∞∑
n=−∞

cnδ(ω − nω0)

with (see [27]): ω0 = 2π
T , c0 = 0 , cm = 2

T
sin(mω0a/2)

mω0
for m �= 0.

Then the corresponding Fourier transform of the heat power
fluctuation on the surface at ξ = 0 is given by Eq. (17) and the
solution in the time domain is:

W0(t) =
+∞∫

−∞
Pξ=0(ω)eiωt dω

=
+∞∫

−∞
2πR2ξLG(ω)q0

+∞∑
n=−∞

cnδ(ω − nω0)e
iωt dω

= WR

+∞∑
n=−∞

cnG(nω0)e
inω0t

where WR = 2πRLq0 is the amplitude fluctuation of the heat
power on the lateral surface, and Fig. 6 shows the heat power
fluctuation on the surface at ξ = 0, for different values of ξL,
for the case a = T /2 and T = R2

α
. As expected, the increase of

the cylinder length, increasing the thermal inertia, decreases the
amplitude fluctuation of the heat power on the surface ξ = 0,
consistently with the results shown in the Bode plots of Fig. 5.

It is possible to develop a general way to introduce the var-
ious kind of B.C. on the surface at ξ = 0 and ξ = ξL into the
solving formulae, and this can be done in a relatively simple
way resorting on the thermal quadrupole formalism, as it will
be shown in the next section.

5. The solution under the thermal quadrupole formalism

The thermal quadrupole formalism (see [21]) is a useful and
compact way to represent the solution of a conduction prob-
lem and it allows a relatively simple treatment of conduction in
composite systems. After defining Zn(ξ,ω) = − k

R
Xn,ξ (ξ,ω),

the functions (10) can be written under the form:
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Xn(ξ,ω) = Xn(0,ω) cosh(λnξ) − Zn(0,ω)
R

kλn

sinh(λnξ)

Zn(ξ,ω) = − k

R
λnXn(0,ω) sinh(λnξ) + Zn(0,ω) cosh(λnξ)

(18)

and setting:

Yn(ξ,ω) =
[

Xn

Zn

]

Mn(ξ,ω) =
[ cosh(λnξ) − R

kλn
sinh(λnξ)

− kλn

R
sinh(λnξ) cosh(λnξ)

]

Eqs. (18) can be written in the compact matrix form:

Yn(ξ,ω) = Mn(ξ,ω)Yn(0,ω) (19)

that is the basis of the thermal quadrupole approach. The lin-
earity of the problem allows also to introduce the B.C. into the
general solution in a simple way (see also [24]). After defining:

Φ̂0(η,ω) = Φ0(η,ω) − ΦRa1s(η) =
∞∑

n=1

f0,n(ω)J0(γnη)

Φ̂L(η,ω) = ΦL(η,ω) − ΦRb1s(η) =
∞∑

n=1

fL,n(ω)J0(γnη)

where the series expansion is allowed by the completeness of
the set J0(γnη), the B.C. on ξ = 0 and ξ = ξL can be written
under the general form:

a1Xn(0,ω) + a2Zn(0,ω)

= f0,n(ω) − a1ΦR(ω)gn(ω) = p0,n(ω)

b1Xn(ξL,ω) + b2Zn(ξL,ω)

= fL,n(ω) − b1ΦR(ω)gn(ω) = pL,n(ω) (20)

Setting

a =
[

a1
a2

]
; b =

[
b1

b2

]
Eqs. (20) can be written in compact form:

aT Yn(0) = p0,n; bT Yn(ξL) = pL,n (21)

and using (19), the second of (21) becomes:

bT Mn(ξL,ω) · Yn(0) = pL,n

Defining:

pn =
[

p0,n

pL,n

]
; dT = bT Mn(ξL); Cn =

[
a1 a2

d1 d2

]
(22)

the B.C. (20) can be written (under the condition det(Cn) �= 0)
as:

Yn(0) = C−1
n · pn (23)

and

Yn(ξ) = Mn(ξ) · C−1
n · pn

which yields, in a compact form, the functions Yn(ξ) in terms
of the forcing functions.
The solution of the transformed problem (4) can then be
written in compact form after defining:

Z(ξ, η) =
[

S(ξ, η)

Q(ξ, η)

]

gn(ω) =
[

gn(ω)

0

]
; s(η) =

[
s(η)

0

]
Hn(ξ) = Yn(ξ) + ΦRgn = Mn(ξ) · C−1

n · pn + ΦRgn (24)

then:

Z(ξ, η) =
∞∑

n=1

Hn(ξ)J0(γnη) + ΦR s(η)

6. Extension to composite cylinders

The thermal quadrupole formalism allows an almost straight-
forward extension of the results to m-slab composite cylinder.
The solution in each slab can be written as:

Z(m)(ξ, η) =
[

S(m)(ξ, η)

Q(m)(ξ, η)

]

=
∞∑

n=1

[
Y(m)

n (ξ) + ΦRg(m)
n

]
J0

(
γ (m)
n η

) + ΦR s(m)(η)

(25)

where the index m is relative to the m-th slab, the coordinate
ξ must now be considered as “local”, i.e. for the m-th slab it
always spans between 0 and ξm = Lm

R
, γ

(m)
n = γn(Bim) with

Bim = hR
km

(km being the conductivity of the m-th slab). The

vectors Y(m)
n (ξ) can be written as:

Y(m)
n (ξ) =

[
X

(m)
n (ξ, η)

W
(m)
n (ξ, η)

]
= M(m)

n (ξ) · Y(m)
n (0) (26)

and the interface conditions can generally be written as:

Z(m)
n (0, η) = Z(m−1)

n (ξm−1, η) (27)

6.1. The homogeneous case ΦR = 0

Also in this case, the B.C. at η = 1 set the nature of the prob-
lem and the three different kinds must be treated separately. In
fact, for the 1st and 2nd kind, the eigenvalues γ

(k)
n are the same

for all the slabs (in fact Bi = ∞ and Bi = 0 respectively, for all
the slabs) while they are different for the 3rd kind B.C. For the
1st and 2nd kind, the interface conditions simplify to:

Y(m)
n (0) = Y(m−1)

n (ξm−1) (28)

and applying repeatedly Eq. (26) one obtains:

Y(m)
n (ξ) = H(m)

n (ξ)Y(1)
n (0) (29)

where:

H(m)
n (ξ) = M(m)

n (ξ) · M(m−1)
n (ξm−1) · · · M(1)

n (ξ1)

The 3rd kind B.C. on η = 1 imposes different sets of eigen-
values and eigenfunctions for each slab, and Eq. (27) becomes:
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∞∑
n=1

Y(m)
n (0)J0

(
γ (m)
n η

) =
∞∑

n=1

Y(m−1)
n (ξm−1)J0

(
γ (m−1)
n η

)
(30)

and does not simplifies to (28). However the completeness of
the eigenfunction set allows to write:

J0
(
γ (m−1)
n η

) =
∞∑
l=1

a
m−1,m
n,l J0

(
γ

(m)
l η

)
(31)

where (see [28]):

a
m−1,m
p,l =

∫ 1
0 J0(γ

(m−1)
p η)J0(γ

(m)
l η)η dη∫ 1

0 [J0(γ
(m)
l η)]2η dη

= 2
(Bi(m) − Bi(m−1))J0(γ

(m−1)
p )

[(γ (m)
l )2 − (γ

(m−1)
p )2][1 + (Bi(m)/γ

(m)
l )2]J0(γ

(m)
l )

(32)

Then, Eq. (30) becomes:

∞∑
n=1

Y(m)
n (0)J0

(
γ (m)
n η

)

=
∞∑

n=1

{ ∞∑
p=1

am−1,m
p,n Y(m−1)

p (ξm−1)

}
J0

(
γ (m)
n η

)
yielding:

Y(m)
n (0) =

∞∑
p=1

am−1,m
p,n Y(m−1)

p (ξm−1)

and resorting on Eq. (26):

Y(m)
n (0) =

∞∑
p=1

Bm−1,m
p,n (ξm−1) · Y(m−1)

p (0) (33)

with:

Bm−1,m
p,n (ξ) = am−1,m

p,n M(m−1)
p (ξ)

By applying repeatedly Eq. (33) and using (26) the following
result is obtained:

Y(m)
nm

(ξ) =
∞∑

n1=1

Ĥ(m)
nm,n1

(ξ) · Y(1)
n1

(0) (34)

with

Ĥ(m)
nm,n1

(ξ) = M(m)
nm

(ξ) ·
∞∑

n2=1

· · ·

∞∑
nm−1=1

Bm−1,m
nm−1,nm

(ξm−1) · · · B2,3
n2,n3

(ξ2) · B1,2
n1,n2

(ξ1)

Eq. (34) is the equivalent of (29) for the case of B.C. of
third kind. It should be noticed that in case the eigenvalues
are the same for all slabs the coefficients α

m,m−1
p,n become (see

Eq. (32)): α
m,m−1
p,n = δp,n, then Ĥ(m)

nm,n1(ξ) = δnm,n1 H(m)
n (ξ) re-

covering the same result that holds when B.C. of 1st or 2nd kind
are imposed on the surface η = 1.
6.2. The non-homogeneous case: ΦR �= 0

The non-homogeneous case is slightly more involved. Gen-
erally, the interface conditions are still given by Eq. (27) but
the conditions on η = 1 may produce inconsistency. Precisely,
among the non-homogeneous B.C. at η = 1 only the 1st kind
B.C. is unconditionally admissible and this is the only one that
will be treated here. The interface conditions can then be writ-
ten:

Y(m)
n (0) = Y(m−1)

n (ξm−1) + ΦR

(
g(m−1)
n − g(m)

n

)
(35)

and using Eq. (26):

Y(m)
n (ξ) = M(m)

n (ξ)Y(m−1)
n (ξm−1)

+ ΦR M(m)
n (ξ)

(
g(m−1)
n − g(m)

n

)
(36)

By applying repeatedly Eq. (36) the following rule is easily
found:

Y(m)
n (ξ) = H(m)

n (ξ)Y(1)
n (0)

+ ΦR M(m)
n (ξ)

k∑
l=2

N (m−1,l)
n

(
g(l−1)
n − g(l)

n

)
(37)

with

N (m−1,l)
n = M(m−1)

n (ξm−1) · M(m−2)
n (ξk−2) · · · M(l)

n (ξl)

= H(m−1)
n (ξm−1) · {H(l−1)

n (ξl−1)
}−1

to notice that det M(m−1)
n = 1 and {H(m)

n (ξm)}−1 always exists.
Eq. (37) generalises Eq. (29) to the non-homogeneous (ΦR �= 0)
case.

The B.C. can again be introduced into the general solution
following a procedure similar to that seen in the previous sec-
tion, observing that:

aT Y(1)
n (0) = p0,n; bT Y(m)

n (ξm) = pL,n (38)

and referring to Eq. (20) for the definition of the functions ps,n.
From Eq. (37):

Y(m)
n (ξm) = H(m)

n (ξm)Y(1)
n (0) + ΦR

m∑
l=2

N (m,l)
n

(
g(l−1)
n − g(l)

n

)
the second of (38) becomes:

bT H(m)
n (ξm)Y(1)

n (0) = pL,n − ΦRb1

m∑
l=2

N (m,l)
n

(
g(l−1)

n − g(l)
n

)
Defining

qn =
[

p0,n

pL,n − ΦRb1
∑m

l=2 N (m,l)
n

(
g

(l−1)
n − g

(l)
n

)]

we can now write (see the analogous equation (23))

Y(1)
n (0) = C−1

n qn (39)

thus obtaining:
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Y(m)
n (ξ) = H(m)

n (ξ)

{
C−1

n qn

+ ΦR

m∑
l=2

(
H(l−1)

n (ξl−1)
)(

g(l−1)
n − g(l)

n

)}
(40)

Finally the field in each slab can be calculated using Eq. (25).
This particular form of the general solution has the noticeable
advantage of a relatively simple implementation when numeri-
cal results are needed. To notice that for the homogeneous cases
with B.C. of 1st and 2nd kind equation (40) holds by setting
ΦR = 0 everywhere. For the homogeneous case with B.C. of
3rd kind the procedure is not anymore applicable as in this case
Eqs. (38) become:

aT
∞∑

n1=1

δn,n1 Y(1)
n1

(0) = p0,n

bT
∞∑

n1=1

H(m)
n,n1

(ξm)Y(1)
n1

(0) = pL,n

and there is not any equivalent of Eq. (39). However, Eq. ( 34)
allows to relate the solution in each slab to the B.C. on ξ = 0 or
ξ = ξL in compact form, which is the basis for the application
of the normal thermal quadrupole formalism to this problem.

7. Two special cases

There are two interesting limiting cases to be analysed apart,
as they need a different approach to obtain the solution and they
complete the problem, namely: the semi-infinite cylinder of fi-
nite radius and the finite cylinder of infinite radius. These two
cases are solved in the next subsections.

7.1. The semi-infinite cylinder of finite radius

Consider a semi-infinite cylindrical (0 � x � ∞) bar of fi-
nite radius R. The transformed problem (4) can be solved using
the same procedure above reported, again the general solution
can be written as:

S(ξ, η,ω) =
∞∑

n=1

Xn(ξ,ω)J0(γnη)

+ ΦR

[ ∞∑
n=1

gn(ω)J0(γnη) + s(η)

]

where gn and γn depend on the kind of B.C. on the lateral sur-
face (see Eq. (15)). The solutions Xn have the general form (10)
and the finiteness of their value at infinite implies that An = 0,
and this also implies that they vanish at infinite. This means that
the solution at infinite must be:

S(∞, η,ω) = ΦR

[ ∞∑
n=1

gn(ξ,ω)J0(γnη) + s(η)

]

which is the solution that holds for an infinite bar subject to
periodic uniform boundary conditions. The B.C. at ξ = 0, after
setting
Φ̂0 = Φ0 − ΦRa1s(η) =
∞∑

n=1

f0,n(ω)J0(γnη)

become:

a1Xn(0,ω) + a2Zn(0,ω) = f0,n(ω) − a1ΦR(ω)gn(ω)

= p0,n(ω)

and they are satisfied setting:

Xn(0,ω) = p0,n(ω)

a1 + a2kλn/R

It is worth to notice that the x-component of the heat flux
transform can be written:

Q(ξ,η,ω) =
∞∑

n=1

kλn

R
Xn(ξ,ω)J0(γnη)

and for any reasonable distribution of S on the surface at ξ = 0,
the coefficients f0,n tend to zero for sufficiently large values of
n, then there exists a value of β large enough that for all the
f0,n that are significantly different from zero the approxima-
tion: λn � √

β holds. In this case, for ΦR = 0 (homogeneous
B.C. on the lateral surface):

Q(ξ,η,ω) � √
β

∞∑
n=1

Xn(ξ,ω)J0(γnη) = √
β S(ξ, η,ω)

which is exactly the relation that holds for the 1-D semi-infinite
solid (see for example [24]), that means that the semi-infinite
solid approximation holds also locally (i.e. for every η) for β

sufficiently large.

7.2. The finite cylinder of infinite radius

This is the case of a plane slab of finite thickness (0 � x � L)
and infinite on the other dimensions, but characterised by radial
symmetric boundary conditions on its surfaces. This problem
needs an alternative approach as now it is not anymore possi-
ble to set an eigenvalue problem. The B.C. for R = ∞ is now
simply

S(ξ,∞,ω) = 0

while the first two of (5) still apply. Let consider the Hankel
transform (some time called Fourier–Bessel, see for example
[25]) of the field S, defined as:

Θ(ξ, γ,ω) =
∞∫

0

S(ξ, η,ω)J0(γ η)η dη

where now η = r
L

, ξ = x
L

, it is easily shown [26] that:

S(ξ, η,ω) =
∞∫

0

Θ(ξ, γ,ω)J0(γ η)γ dγ (41)

satisfies the B.C. at η = 0 and η = ∞. Substituting (41) into

Eq. (4) (where now β = iωL2
) one obtains:
α
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∂2Θ(ξ, γ,ω)

∂ξ2
− (γ 2 + β)Θ(ξ, γ,ω) = 0

whose general solution is:

Θ = Aeλξ + Be−λξ

with λ = √
γ 2 + β. From here on, the procedure based on the

thermal quadrupole formalism can be applied, writing the B.C.
on ξ = 0 and ξ = 1 under the general form:

a1Θ(0, γ,ω) + a2Γ (0, γ,ω) = f0(γ,ω)

b1Θ(1, γ,ω) + b2Γ (1, γ,ω) = fL(γ,ω) (42)

where Γ = − k
L
Θξ , and

fs(γ,ω) =
∞∫

0

Φs(η,ω)J0(γ η)η dη

Defining

Ψ =
[

Θ

Γ

]
; M(ξ, γ,ω) =

[
cosh(λξ) − R

kλ
sinh(λξ)

− kλ
R

sinh(λξ) cosh(λξ)

]

and following the previously described procedure, the follow-
ing solution is found:

Ψ (ξ, γ,ω) = M(ξ, γ,ω) C−1 · p

with

p =
[

f0

fL

]
; dT = bT M(1, γ,ω); C =

[
a1 a2

d1 d2

]

The solution of the problem in the physical space can then be
written as:

Z(ξ, η,ω) =
∞∫

0

Ψ (ξ, γ,ω)J0(γ η)γ dγ

=
∞∫

0

M(ξ, γ,ω)C−1 · pJ0(γ η)γ dγ

The case of semi-infinite solid with non-uniform (radial sym-
metric) B.C. at x = 0 can be seen as a particular case of this
problem obtained when L goes to infinite. In such case anyway
the transformed equation (4 ) may be written:

∂2S

∂ξ2
+ 1

η

∂

∂η

(
η
∂S

∂η

)
= iS

where now the coordinates x and r are non-dimensionalised by

the penetration depth [21]: dp =
√

α
ω

, i.e. ξ = x
√

ω
α
, η = r

√
ω
α

.

The condition at ξ = ∞ and the general B.C. at ξ = 0:

a1S(0, η,ω) − a2k

√
ω

α
Sξ (0, η,ω) = Φ0(η,ω)

yield the general solution:

S(ξ, η,ω) =
∞∫

f0(γ,ω)

a1 + a2kλ/dp(ω)
e−λξ J0(γ η)γ dγ
0

with

fs(γ,ω) =
∞∫

0

Φ0(η,ω)J0(γ η)η dη

8. Conclusions

The problem of periodic conduction in a finite cylindri-
cal slab was studied. Analytical solutions of the steady peri-
odic problem were found for quite general kinds of boundary
conditions with the sole limitation of uniform conditions (of
any kind) on the lateral surface and cylindrical symmetry on
the bases. Extension of the solution to the case of cylindri-
cal composite slab was proposed on the framework of thermal
quadrupole formalism and general solutions for any kind of
complexity were then found in a form that may easily be im-
plemented for numerical evaluation. The two limiting cases of
semi-infinite cylinder of finite radius and of finite cylinder of
infinite radius were also treated and solved, the case of periodic
conduction in a semi-infinite solid with non-uniform cylindric
symmetry boundary conditions can be seen as a particular case
of the last problem and an explicit solution was given.
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